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Abstract

This thesis aims to propose a detection algorithm for AC Arc Fault Detection Devices(AFDD)
using direct digitization and supervised machine learning algorithms.

The price of high frequency, direct digitization devices have been steadily decreasing in
recent years and it is expected that this trend will continue in the future. Therefore, data
processing using direct digitization is becoming a feasible method to use in AC arc fault
detection devices.

The main purpose of this thesis is to analyze arc faults in suitable domains and to
propose a method for detection based on supervised machine learning algorithms. In order
to analyze arc faults, measurements were gathered according to IEC62606 standards. After
suitable analysis, this data was then used to design supervised machine learning algorithms
to achieve successful detection performance.

In particular, the main contributions of the thesis to arc fault detection research are as
follows:

1. An optimized algorithm for detection that can be utilized both in existing solutions
and in the proposed solution in this thesis

2. An automated feature selection tool from current waveforms that is done heuristically
in existing solutions.

Keywords:
Supervised Machine Learning, AC Arc Fault Detection, Arc Fault Detection Device(AFDD)

Support Vector machine, Feature extraction, Fourier transform.
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Abstract

Ćılem této práce je vyvinout detekčńı algoritmus pro detekci stř́ıdavého oblouku v zař́ızeńıch
AFDD s vyuit́ım př́ımé digitalizace a strojového učeni.

Cena obvod̊u pro rychlou př́ımou digitalizaci stále v posledńıch letech klesá a očekává
se pokračováńı tohoto trendu. Proto bude moné pouit́ı př́ımé digitalizace v zař́ızeńıch pro
detekci oblouku AFDD.

Hlavńım ćılem práce je analýza oblouku ve vhodných oblastech a návrh metody de-
tekce zaloené na strojovém učeńı s učitelem. Pro analýzu byla provedena měřeńı podle
standardu IEC62606. Po analýze byla tato data pouita pro návrh algoritmu strojového
učeńı s učitelem k dosaeńı spěšné detekčńı schopnosti. Hlavńım př́ınosem práce k výzkumu

detekce oblouku je:

1. optimalizovaný algoritmus pro detekci, který můe být pouit v existuj́ıćıch řešeńıch a
v řešeńı navreném v této práci

2. nástroj pro automatizovaný výběr př́ıznak̊u, který je v existuj́ıćıch řešeńıch prováděn
heuristicky

Kĺıčová slova:
Strojové učeńı s učitelem, detekce stř ı́davého oblouku, zař́ızeńı pro detekci stř́ıdavého

oblouku, SVM, extrakce př́ıznak̊u, Fourierova transformace
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Chapter 1

Introduction

In this chapter, the motivation for thesis subject ” AC arc fault detection” is specified,
challenges in design of arc fault detection devices are addressed and outcomes and structure
of thesis are stated.

Electrical fires are one of deadliest and common hazards of the 21stcentury. According
to Fire Safe Europe which is an European association for fire safety in buildings, 200000
fires are reported in Europe each year and 90% of fires in the European Union happen in
buildings. 4000 people are killed by fire in Europe every year which is 11 deaths per day.
7000 people are hospitalized in Europe each year due to severe injuries caused by fire. 126
billion Euro which is equivalent to 1% of European GDP is eaten up by fire damage each
year. [1] From 2014 to 2016, an estimated 24,000 residential building electrical fires were
reported to United States fire departments each year and these fires caused an estimated
310 deaths, 850 injuries and $871 million in property loss. [3][4]

According to the Geneva Association, 25% of fires are ignited by electrical failure in
Europe.[2]. In only 17% of residential building electrical fires, the fire spread was limited
to the object where the fire started.[3] Residential building electrical fires occurred most
often in the winter month of January (12%) which is considered because of an increase in
demand of heating.[3]

Together with deaths and injuries, there are also economical losses caused by fires. In
the U.S, residential building electrical fires cost $27.500 loss per fire.[3]

Different protective devices are used to prevent deaths, injuries, and economic loss.
Most widely used devices are circuit breakers, introduced in more detail in Section 2.3.1.
Circuit breakers provide protection against overloads and short circuits. Residual current
devices explained in Section 2.3.2 are used to detect the imbalance between live and neutral
wires, namely, leakages. However, these devices cannot provide protection against arc
faults. Arc fault detection devices, introduced in more detail in Section 2.3.3, are necessary
to employ in order to provide more protection.

Since unspecified short-circuit arc (23%), and short-circuit arc from defective, worn
insulation (11%) are a big portion of the factors that contribute to the ignition of residential
electrical fires, together with the malfunction (43%) and other electrical failure[3], arc

1



1. Introduction

fault detection devices are important with respect to saving lives, preventing injuries and
economical loss.

Lastly, according to Transparency Market Research (TMR), the arc fault detection
device market revenue has reached the $3.769 billion in 2017 and it is expected to grow
with a solid 5.3% compound annual growth rate until 2025 where revenue is projected
to increase 5.596$ billion by 2025. [5] This presents a promising opportunity for this
technology to be adopted by the market.

1.1 Motivation

Arcing is defined as ”luminous discharge of electricity across an insulating medium, usually
accompanied by the partial volatilization of the electrodes”[6]

When arc fault occurs, it generates broadband noise up to 1GHz. Arc fault detection
is a challenging task because of the complexity of phenomena explained in Section 2.2.
However, introduction of new loads with different noise characteristics, power line com-
munication devices, or different type of distribution systems such as ring circuitry, make
detection even more challenging for existing detection methods. In light of this inform-
ation, it is needed to investigate advancements in arc fault detection technology and to
propose more robust solutions.

A number of parameters make it difficult to identify arc fault events. These include wide
spectrum noise, complex cause-effect relationships, and load dependant signal properties.
As such, it is important to employ a variety of signal processing approaches, including:

1. Time domain signal processing

2. Frequency domain signal processing

3. Time-frequency domain signal processing

Generally, the approaches above are combined in many products on the market to
increase robustness and minimize nuisance tripping. Robustness issues decrease the protec-
tion level while nuisance tripping has economical impacts due to unnecessary de-energization
of circuitry. As an answer to this, there are numerous algorithms being developed to in-
crease robustness of arc fault detection.

Arc fault detection is a binary classification task, a task of classifying the elements
of a given set into two groups (predicting which group each one belongs to) on the basis
of a classification rule.[24] Considering the advancements in data acquisition devices and
classification algorithms rapidly developed in recent past, it becomes feasible to propose
a new detection algorithm using direct digitization for data acquisition and supervised
machine learning algorithms for detection.

2



1.2. Goals of the Thesis

1.2 Goals of the Thesis

This thesis is intended to analyze arc faults that occur in low voltage level residential areas
using suitable signal processing techniques and to propose a novel detection algorithm for
arc fault detection using supervised machine learning algorithms.

In order to investigate arc faults in detail, measurements in compliance with the
IEC:62606 standard [6] that contains general requirements for arc fault detection devices
are used because using real measurements is more reliable and the result is guaranteed
compared to other methods such as modelling arc faults.

To design an arc fault detection algorithm, data acquired by measurements need to
be analyzed in suitable domains. In this thesis, main goal is to achieve best detection
performance by applying suitable signal processing techniques.

Another goal of the thesis is to design supervised machine learning algorithms for arc
fault detection and then to design an algorithm to achieve successful and robust detection
performance.

In particular, the main contributions of the thesis to arc fault detection research are as
follows:

1. A successful detection algorithm that is suitable to use with a proposed data ac-
quisition method, namely, direct digitization. The algorithm can also be utilized by
existing detection solutions to increase efficiency and robustness.

2. An automated feature selection tool, for analyzing current waveforms, that is used
for pinpointing the frequency bands that provide sufficiently enough data to classify
an arc fault event successfully. This is done heuristically in existing solutions.

1.3 Structure of the Thesis

The thesis is organized into six chapters as follows:

1. Introduction: Describes the motivation behind arc fault detection and gives statistical
data. Main contributions of the thesis are introduced.

2. AC Arc Fault Detection: Introduces AC arc fault types, arc characteristics and pro-
tection devices. Load types and characteristics are introduced.

3. AFDD Tests and Measurements : Tests and measurements according to IEC:62606 are
introduced. Measurement results and test setups used in measurements are explained.

4. Direct Digitization Approach: Proposed algorithm for arc fault detection is explained
in detail. Basics of support vector machine are introduced. Designed feature extrac-
tion algorithms are presented. Proposed detection algorithm from signal processing
to detection are explained in detail. Performance metrics and criteria are introduced.

5. Main Results : Results of research are summarized according to decided metrics.
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1. Introduction

6. Conclusion: Findings are discussed and possible topics for further research is presen-
ted.
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Chapter 2

AC Arc fault detection

In this chapter, AC arc fault types and corresponding protection devices with a focus on
arc fault detection device is explained.

2.1 AC Arc Faults

According to IEC62606:2013 which is the international standard published by International
Electrotechnical Commission for general requirements for arc fault detection devices, an
arc is defined as a luminous discharge of electricity across an insulating medium, which
usually results in the partial volatilisation of the electrodes. The definition of an arc fault is
given as a hazardous unintentional arc between two conductors.[6] An AFDD is described
as a device able to detect and mitigate the effects of arc faults by disconnecting the circuit
when such a fault is detected.[7]

Although arcing or sparks may occur under normal operation in loads such as electrical
drills or air compressors, these are not classified as hazardous. As such the standard for a
harmful arc, in arc fault detection research is much higher. Since an AFDD is intended to
de-energize the circuit when a hazardous arc occurs, these devices must be able to ignore
non-hazardous arcing. When distinguishing between hazardous arc faults and arcing due
to normal operation, some loads can still present a large challenge in arc fault detection
research

According to [8] , typical causes of an arc faults are as follows:

1. Cords or wires having a loose connection

2. Crushed wires

3. Damaged or misapplied electrical equipment

5



2. AC Arc fault detection

4. Ageing installations

5. Pets and rodent bites

Illustration of common arc fault causes are shown in Figure 2.1.

Figure 2.1: Illustration of fault causes[63]

According to the U.S. Fire Administration, the leading specific items most often first
ignited in residential building electrical fires are electrical wire, cable insulation (31%)
and structural member or framing (18%). The leading factors that contribute to the ig-
nition of residential building electrical fires are other electrical failure, malfunction (43%),
unspecified short-circuit arc (23%), and short-circuit arc from defective, worn insulation
(11%).[3]

Arc faults are typically at the nominal current or just below, therefore it is difficult to
detect using traditional protection devices. Small arcs may grow in time as damage ton
insulation worsens. Arc faults are detected by using the fact that high frequency noise
appears in the waveform as a result of arcing and breakdown of the fault current close to
zero-crossing of the driving voltage.[8]
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2.1. AC Arc Faults

According to IEC62606, there are three types of arc faults which are earth arc faults,
parallel arc faults and series arc faults. These are introduced in more detail in the following
sections.

2.1.1 Parallel Arc Fault

Parallel arc fault is defined as an arc fault where the arc current is flowing between act-
ive conductors in parallel with the load of the circuit.[6] The total current in the circuit
increases depending on load impedance and arc impedance. There is no current flowing
through the earth conductor. Residual current devices(RCDs), explained in more detail in
section 2.3.2, do not provide protection for parallel arc faults, whereas, miniature circuit
breakers(MCBs) might provide protection depending on load and arc impedance whether
tripping conditions such as current/time are presented or not. Parallel arc is illustrated in
Figure 2.2.

Figure 2.2: Parallel Arc[10]

2.1.2 Ground Arc Fault

Ground arc fault is defined as an arc fault where the current is flowing from an active
conductor to earth. [6] Ground faults are sometimes called residual current faults or earth
leakage faults. Typically, they have much lower current compared to short circuit. A
ground fault can happen in permanent wiring, in an appliance itself, or in the cord of
appliance. For some ground faults AFDD can trip if other protection is not installed. For
instance, if an RCD(see section 2.3.2) is not installed, an AFDD trips for higher nominal
currents than RCD, or some cases where overcurrent protection devices do not provide
protection because the impedance of the faulty circuit can be too high.[61] More detailed
information about device characteristics of AFDD are given in the section 2.3.3. Ground
arc is illustrated in Figure 2.3.
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2. AC Arc fault detection

Figure 2.3: Ground Arc[10]

2.1.3 Series Arc Fault

IEC62606 standards define series arc faults as arc faults where the current is flowing through
the load(s) of the final circuit protected by an AFDD.[6] Arc voltage is in series with the
load and it behaves like an electrical component serially connected to acircuit. Therefore,
load current is different than expected current in normal operation of load.

Additionally, it behaves as a voltage divider and causes a decrease on the load voltage.
Loads that provide a constant power output, such as power supplies, compensate this with
an increase in current consumption. Total power dissipation in the circuit increases. RCDs
and MCBs cannot provide protection for such a fault[9]. Therefore, arc fault detection
device(AFDD) is required to fill this protection gap in addition to MCBs and RCDs.
Series arc is illustrated in Figure 2.4.

Figure 2.4: Series Arc[10]
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2.2. Arc Fault Characteristics

2.2 Arc Fault Characteristics

According to a US patent filed by Siemens[12], during the time that the arc is conducting
current, it produces wide-band, high-frequency noise ranging from about 10kHz to 1GHz.
The inventor of [12], also stated that the resulting characteristic pattern of high-frequency
noise with synchronous gaps is unique to arcing and therefore an algorithm for analyzing
repetitive patterns in the amplitude of the noise can be used to detect arcing.

Beacuse the noise generated by arcing is wide-band and reaches frequencies up to 1GHz,
any informative combination of frequency spectrum can be used to detect arcing. However,
there are some advantages of using a bandwidth of 1 to 50MHz, which are clearly stated
in [12] and the advantages are listed as follows:

1. Household appliances are intentionally designed to minimize the noise above 1MHz
since it can interfere with radio broadcasts. Therefore, noise generated by load itself
is minimal above 1MHz so that it is suitable to use in the detection of an arc fault.[12]

2. Loading effects of devices connected to the line can be presented. Therefore arc noise
signal is attenuated. Power distribution lines behaves as transmission lines at high
frequencies. Other devices that are supplied by the same power distribution line are
inductively isolated from the power distribution line by their main cords and internal
wires, which limits the amount of attenuation they can produce. Using a frequency
band of 1 to 50MHz will eliminate the possible effects of these loading effects.[12]

Noise generated by the arc fault appears on both the line voltage and load current
solely when arcing conducts. Amplitude of the noise is exactly 0 as the arc extinguishes
and reignites at zero-cross section of line voltage,i.e every half-cycle of the line frequency.
This is the reason that synchronous gaps are observed on the noise generated by an arcing.
For resistive loads, arc voltage is in phase with the line voltage. Therefore, these gaps
occurs simultaneously with the zero-crossing of line voltage. For reactive loads, arc voltage
and the gaps may shift in phase up to plus or minus 90◦ depending on the line voltage.[12]
Reactance of the load in series with the arc is determinative if the gaps occur simultaneously
with the zero-crossings of line voltage. However, regardless of phase shifts, gaps in the noise
generated by arcing are equal in to half of the line frequency cycle.

2.3 Protection Devices

Protection devices in residential power systems are introduced in following sections. There
are three different subcategories. Devices with same functionality have different naming in
different places and they are often combined.
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2. AC Arc fault detection

2.3.1 Miniature Circuit Breaker(MCB) and Moulded Case Circuit
Breaker (MCCB)

Miniature circuit breakers(MCB) and moulded case circuit breakers(MCCB) protect resid-
ential power distribution lines against overloads and short circuits. Additional to fuses that
are used for protection as early as 1864 [13], MCBs bring a switching function. MCBs of-
ten work with thermal or thermal-magnetic principles whereas recent MCCBs offer higher
rated currents and employ electronic tripping units and adjustable breaker characteristics.
MCBs and MCCBs also do not require replacement after tripping if their rated capabilities
are not exceeded. They are the most common protection devices employed on the world.
There are three types of MCBs: Type B, C and D. Type B trips at 3 to 5 times of the rated
current and are used for domestic and commercial installations having little or no switching
surges, whereas type C trips at 5 to 10 times the rated current and is designed for general
use in commercial or industrial application with a greater use of fluorescent lighting and
motors which may cause nuisance tripping of type B breakers. Type D breakers trip 10 to
20 times the rated current and are suitable for industrial applications where transformers,
large motors, welding cause high inrush switching surges.

Figure 2.5: Miniature Circuit Breaker[17]

2.3.2 Residual Current Device(RCD) or Residual Current Circuit Breaker
(RCCB)

While the exact origins of the RCD are unknown, the technology appeared on the market
around the 1950s and was used by utility companies against ’energy theft’ in order to
prevent usage of current from phase to earth instead of phase to neutral.[14] Operating
principle of RCDs is given in Figure 2.6.
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2.3. Protection Devices

Figure 2.6: RCD Working Principle[16]

Their working principle is based on monitoring the wiring continuously to detect leak-
ages. When there is no fault, vectorial sum of the currents on live wire and neutral
wire(I1 + I2 shown in Figure 2.6) is equal to 0. In case of a fault, if I1 + I2 exceeds
the rated residual operating current Iδn, regarding circuit at the secondary side of toroid
sends a trip signal to residual current device.[16] Typically, 5mA (30mA in some places) is
considered as an imbalance which can cause fatal outcomes in case of an electrocution.

An RCD detects the imbalance in the live wire and neutral wire, however, it does not
provide protection against overload and short circuit as an MCB does, except in the special
case of a short circuit from live to ground. There are available products on the market
that often integrate these two together. These are called:

1. In Europe: Residual current circuit breaker with overcurrent protection(RCBO)

2. In the United States and Canada: Ground fault circuit interrupter(GFCI), or ground
fault interrupter (GFI), or an appliance leakage current interrupter (ALCI).

3. In Australia: Safety switch or RCD

There are also outlet versions of GFCIs in US market, which is simply a GFCI included
in a dual socket. Unlike a GFCI, GFCI outlets only provide protection for devices plugged
into it or other outlets downstream from the outlet. [18]
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2. AC Arc fault detection

2.3.3 Arc Fault Detection Device (AFDD)

The arc fault detection device shown in Figure 2.7, also known as an arc fault circuit
interrupter is a circuit breaker that trips when an electric arc is detected in the circuit in
order to prevent electrical fires.[20]

Figure 2.7: Arc fault detection device[19]

IEC62606:2013 clearly states that, during a series arc fault, there is no leakage to
ground. Therefore, RCDs cannot detect such a fault. Furthermore, load current is reduced
because of the impedance of a series arc; therefore, the current level is also lower than
the threshold of the circuit breakers and fuses. When arcing occurs between a phase and
a neutral conductor, the only limitation to the current is the impedance of installation.
Conventional circuit breakers are not intended to trip for such situations.

Additionally, AFDDs have to distinguish between hazardous and non-hazardous arcs
that occur under the normal operation of some electrical loads such as power drills or
brushed motors. This is a critical requirement because over-sensitive design of an AFDD
can be prone to nuisance tripping. Nuisance tripping has economical impacts whereas
under sensitive design comes with lack of protection. This trade-off has to be taken into
consideration while designing an arc fault detection algorithm.

IEC62606:2013 contains general requirements for arc fault detection devices including
its performance, testing and characteristics. According to [6], limit values of break time
for Un = 230V AFDDs at low arc currents up to 63A are given as follows.
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Test arc current
(r.m.s values)

2.5A 5A 10A 16A 32A 63A

Maximum break
time

1s 0.5s 0.25s 0.15s 0.12s 0.12s

Table 2.1: Limit values of break time for Un = 230 V AFDDs

State of the art devices generally employ a high frequency analog front-end monitoring
circuit combined with a microprocessor. However, introduction of new kinds of loads and
new, cheap and noisy components cause robustness issues, thereby causing either economic
loss or lack of protection. Although there are already many different products offered in
different markets, advancements in signal processing devices and classification algorithms
makes new detection algorithms feasible.

This thesis is intended to propose a novel detection algorithm chain using high frequency
direct digitization to obtain current waveform of loads and then to propose a detection
algorithm using machine learning algorithms such as support vector machine, k-nearest
neighbor and others, which are investigated in more detail in Chapter 4. Such an approach
has some advantages compared to existing algorithms, namely:

1. Although machine learning algorithms can be computationally expensive in training
phase, obtained classifiers do not require high processing power and obtained classifi-
ers are very simple to implement on a microprocessor. Therefore, obtained classifiers
can be even used together with the existing solutions in order to increase robustness
and efficiency.

2. Existing analog front ends are designed using expert knowledge, and therefore they
are designed based on heuristic data. Implemented methodologies in the proposed
arc fault detection technique for extracting features in Section 4.2.1 offer a tool to
automatically extract informative subsets of a given dataset which is simply frequency
domain representation of current waveforms.

3. Since all the processing, training and testing is implemented on both MATLAB and
Python environments, it is simple to modify the algorithms whereas designing an
analog front-end takes much more time.

2.4 Residential Loads and Characteristics

A systematic approach needs to followed in order to investigate the maximum number
of load categories and their effects, because the performance of the algorithm designed in
Chapter 4 is proportional to the coverage of the feature space to real life situation. Namely,
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if feature space constructed from measurements covers a small portion of real life situation,
algorithm would have satisfactory performance metrics in the design phase, however, it
would not perform as expected after implementation. In [21] and [22], categorization of
household loads was established in a systematic manner, and a similar methodology with
minor modifications is also applied in this thesis. There are numerous home appliances
from different manufacturers on the market which have different characteristics even if
they are same types of appliances. Selection of loads and test methodology is introduced
in more detail in chapter 3 . Load types given in Figure 2.8 are investigated in more detail
in the following sections.

Figure 2.8: Residential Load Types

2.4.1 Resistive Loads

Devices such as general incandescent lamps, space and water heaters, electrical cookers,
and similar loads are classified as resistive loads. These devices are assumed to act as ideal
resistors.[22] Voltage and current waveforms are in phase. It is known that inrush current
of resistive loads is small because current reaches steady-state instantaneously and does
not exceed it.

2.4.2 Power Electronics/Switched Mode Power Supply

Numerous number of devices are susceptible to variations in voltage levels, and therefore,
switched mode power supplies are used to supply a regulated dc voltage. Personal com-
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puters, televisions and monitors are widely used examples that utilize SMPSs. According
to [25], the total energy consumption by household appliances grew 1.7% every year on
average from 1970 to 2013 in the United Kingdom and consumer electronics that generally
utilize SMPSs have the biggest residential consumption with an estimation of 1868 ktoe.

According to related standards[23], switched mode power supplies are divided into three
subcategories, as follows:

1. No Power Factor Correlation(n-PFC): SMPS with a rated power smaller than 75 W
do not have to meet harmonic legislation. Therefore, they do not need to include a
power factor correlation circuit.

2. Active Power Factor Correlation(a-PFC): Some SMPS with rated power larger than
75 W include an additional dc-dc converter circuit in order to shape the input current
to have appropriate sinusoidal waveform in-phase with the supply voltage. [22]

3. Passive Power Factor Correlation(p-PFC): p-PFC utilizes a large inductor in the path
of current transmission since inductors resist change in current, therefore resulting a
waveform that is smoother and has less harmonic content.

P-PFC has a wider usage than a-PFC because of its easier implementation and signi-
ficantly lower cost. However, usage of a-PFC increases as the cost of components decreases
steadily.

2.4.3 Energy Efficient Lighting

Light emitting diodes(LEDs) and compact fluorescent lamps (CFLs) are the most widely
used loads that falls into this category. Due to the economic benefits of LEDs compared
to general incandescent bulbs(GILs), energy efficient lighting has been constantly gaining
popularity.

According to the International Energy Agency, LED lighting sales expeienced terrific
growth in recent years. In 2011, LEDs and fluorescent lamps were formed 40% of total sales
with 1% and 39% of the market share respectively. However, in 2018, these two formed
82% of total sales, with LEDs at 40% and fluorescent lamps at 42% of total sales. It is
expected that this trend will continue and LEDs will capture the 80% of total sales and
fluorescent lighting will capture 20% of total sales by the end of 2030. [26]

Figure 2.9 shows the North America industrial and commercial LED lighting market
share in USD millions from 2012 to 2022.
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2. AC Arc fault detection

Figure 2.9: North America Industrial and Commercial LED Lighting Market Share, 2012-
2022 (USD millions)[27]

CFLs of 8, 11 and 18 W are widely replaced with 40, 60 , 100 W GILs accordingly
because of similar output lumens together with much less power consumption.[22] Because
of nonlinearity, harmonics are introduced to the supply system by CFLs.

2.4.4 Single Phase Induction Motor

Figure 2.10 shows a widely used single phase induction motor.

Figure 2.10: Single Phase Induction Motor[28]
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Single phase induction motors are one the most common types of loads found in devices
such as refrigerators, dishwashers, freezers, and air conditioners, which all contains SPIMs.
The reason they are called ’single phase’ is because they work with single phase residential
AC supply. Three phase motors are not included in this thesis since they are outside the
scope of this research. Single phase induction motors are used when a fixed speed is needed.
SPIM has a simple design.

2.4.5 Universal Motor

The universal motor is one of the most widely used components found in numerous appli-
ances, such as blenders, vacuum cleaners, hair dryers, drill machine, sanders, and others.
Another use is for applications that require speed control. Universal motors can operate
with AC and DC. The size of universal motors is relatively small compared to AC motors
that operate on the same frequency. The main features of universal motors are its cap-
ability of working at high speeds, its relatively high start torque, and its small size and
compact design.[21] The disadvantages posed by the universal motors is the acoustic and
electromagnetic noise generated by them.

Figure 2.11: Universal Motor
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Chapter 3

AFDD Tests and Measurements

In this chapter, European test procedure and equipment used in the measurements are
presented. Tested residential loads are introduced. Measured loads are analyzed in time
domain and frequency domain. In order to analyze the arc fault events, different approaches
can be employed. In this thesis, real measurements are employed because of the reliability
of measurement procedures and guaranteed results.

3.1 European Standards Test Procedure

IEC 62606:2013 are the standards that cover the general requirements of arc fault detection
devices including performance, functionality, and testing. To generate an arc fault, either
a carbonized cable specimen or an arc generator can be used. These two are used for the
same purposes, however, there are some minor differences between them in terms of testing
methodology and specifications which are explained in more detail in subsequent sections.
For instance, energy generated by a cable specimen is 2.5 times the energy generated by
an arc generator.Therefore the maximum break time values in Table 2.1 need to be also
2.5 times faster which is shown in Table 3.1.

Test arc current
(r.m.s values)

2.5A 5A 10A 16A 32A 63A

Maximum break
time

0.4s 0.2s 0.1s 0.06s 0.048s 0.048s

Table 3.1: Limit values of break time for Un = 230 V AFDDs if arc generator is used

Cable specimen is used in the experiments carried out in this thesis and they are pre-
pared according to IEC:62606:2013 standards. Preparation of carbonated cable specimen
is covered in Section 3.1.1.
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3.1.1 Cable Specimen

Illustration of cable specimen is shown in Figure 3.1.

Figure 3.1: Cable Specimen[6]

A cable that contains two separate conductors with a cross-sectional area of 1.5mm2,
that could be tied together with a suitable tape or a cable that contains parallel conductors
can be used for experiments. There are three specific types of cables stated in the standard.
OMY 2x1, 50mm2 cables were used for experiments in this thesis.

The methodology is stated in the standards as follows[6]:

1. The material and geometry of a cable has to be taken into consideration to perform a
satisfactory carbonization between the conductors and to initiate arcing by applying
the rated voltage.

2. The cable specimen needs to be prepared longer than 200mm and inner wires need
to each be separated each end of the specimen for 25mm.

3. Outer insulation needs to be slit with a depth of 50mm to expose the inner conductors.
Strands in the inner conductors need to remain undamaged.

4. Two layers of tape have to be wrapped around the slit. The first layer is an electrical
grade black PVC tape. The second layer is a fiberglass tape.

5. The cable specimen has to be connected to the test bench to the further end to the
slit. Inner insulation of conductors has to be stripped approximately 12 mm in this
end.

After the cable is prepared, it will be conditioned to form a carbonized conductive path
through insulation between two inner conductors as follows:
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1. The cable specimen needs to be connected to a circuit that provides 30mA short
circuit current and an open circuit voltage at least 7kV. This connection needs to be
sustained either for 10 seconds or until the smoking stops.

2. As the last step, it is needed to connect the cable specimen to a circuit that provides
300mA short circuit current at a voltage of at least 2 kV or adequate to current flows
through it. This step needs to be applied at least one minute or until the smoke
stops.

The carbonized cable specimen is approved to be complete, if it has a resistance value
equal to the resistance of 100W/230V incandescent lamp or an equivalent resistance value
of path draws 0.3A at 120V. Completed cable specimen according procedure above is shown
in Figure 3.2. These are used in measurements.

Figure 3.2: Prepared Cable Specimen

3.1.2 Arc generator

An arc generator is an apparatus that generates an arc by moving an electrode to another
stationary one. One electrode is made of carbon-graphite with a diameter of 6mm ±
0.5mm and the other one is made of copper. With an appropriate distance between them,
it generates a consistent arc between two electrodes. Figure 3.3 demonstrates an arc
generator.

Conditions of electrodes are also important. It can be necessary to replace or to sharpen
them eventually.

Since the energy provided by an arc generator is 2.5 times less than the carbonized
cable specimen, an AFDD shall de-energize the circuit 2.5 times faster if arc generator is
used instead of cable specimen.[6]
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Figure 3.3: Arc generator[6]

3.1.3 Experiments Described in Standards

Experiments to verify the functionality of an AFDD are described in [6]. Following sections
address regarding experiments in context of this thesis.

3.1.3.1 Test for series arc fault

Circuit diagram for series arc faults using a carbonized cable specimen prepared according
to methodology in Section 3.1.1 is presented in Figure 3.4. All the measurements are per-
formed at the rated voltage of an AFDD which is 220V in Europe.

Figure 3.4: Test circuit for series arc fault test[6]

Tests cover the possible situations that can be faced in case of a series arc fault, i.e,
sudden appearance of series arc fault, inserting a load with series arc fault and closing on
series arc fault. For all the cases, AFDD shall not exceed the tripping values given in Table
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3. AFDD Tests and Measurements

2.1. Following tests are intended for verifying correct operation of AFDD in case of a series
arc fault. The same methodology can be used without an AFDD in order to observe the
current waveform.

3.1.3.1.1 Inserting A Load with Series Arc Test switches S3 and S4 need to be in
open position whereas the switch S1 and AFDD need to be in closed position. A resistive
load should be employed to adjust the test arc current to lowest arc current value that is
provided in table 2.1. Then, test switch S2 is opened. While test switch S1 and AFDD are
in closed position and test switches S3 and S4 are in open positions, switch S3 is abruptly
closed to feed the load with a series arc fault. It is needed to repeat the test for the rated
value of AFDD and break time needs to be in the given values in table 2.1 to verify the
correct operation. [6]

3.1.3.1.2 Sudden Appearance of Series Arc in the Circuit All the switches S1,
S2, S4 and the AFDD needs to be in the closed position. Test arc current needs to be set
from lowest arc current value up to the rated current of AFDD by a resistive load. Then,
the test switch S2 is opened. As a last step, test switch S3 is abruptly closed in order to
insert the load in series with the carbonized cable specimen. Break time needs to be in the
given values in Table 2.1 to verify the correct operation.[6]

3.1.3.1.3 Closing on Series Arc Test switches S1, S3 and AFDD need to be in closed
position. Test arc current needs to be set to the lowest arc current in table 2.1 by a
resistive load. Test switch S1 and S2 need to be opened one after another respectively.
While switches S1 and S4 are in open position, test switch S1 is abruptly closed in order
to insert the load with a series arc fault. Break time needs to be in the given values in
Table 2.1 to verify the correct operation. It is needed to repeat the test for the rated value
of AFDD.[6]

3.1.3.2 Tests for Parallel Arc

There are two types of test that are tests for parallel arc with limited current and parallel
arc cable cutting test which explained in detail in following sections.

3.1.3.2.1 Parallel Arc with Limited Current An AFDD needs to clear an arcing
fault if number of half-cycles of arcing shown in Table 3.2 occurs within a period of 0.5s.[6]
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Test arc current (r.m.s values) 75A 100A 150A 200A 300A 500A

N 12 10 8 8 8 8

Notes: 1) Test arc current values are prospective currents before arcing in the circuit

2) N is the number of half cycles at the rated frequency.

Table 3.2: Maximum allowed number of arcing half-cycles within 0.5 s for AFDDs

In order to accomplish a test according to these requirements, an arcing half-cycle is
considered to be all the current signals occuring in a period of 10ms for a device rated
50Hz(8.3ms for a device rated at 60Hz). In that period of time, some current can be
observed but it shouldn’t be continuous. In explanation, before and after each period
of current flow, it should be an instance with very reduced current or no current. Very
reduced current is defined as the current with amplitude less than 5% of available current
or current that continues for no more than 5% of the duration of half cycle[6]. This can
last for several half cycles or a portion of a half cycle. Fault current level needs to be 75A
and 100A. Figure 3.5 shows the test circuit for parallel arc with limited current.

Figure 3.5: Test circuit for parallel arc fault test[6]

Line impedance Z, shown in figure 3.5, is used to adjust the test current to 75A when
all switches are in closed position. Then, switches S2, S3 and S4 will be opened, AFDD
and the switch S1 will be closed.

Test needs to be repeated with a current adjusted to 100A using the same methodology
above.

Correct operation of AFDD is verified if it clears an arc fault and if the number of
half-cycles of arcing mentioned in table 3.2 occurs within 0.5s. 0.5s period starts with the
first arcing half-cycle.
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3.1.3.2.2 Parallel Arc Cable Cutting There are minor differences in methodology
between the parallel arc cable cutting test and parallel arc with limited current test. The
number of half-cycles, definition of half-cycle and requirements about currents are the
same. However, test circuit has slight changes as it can be seen from Figure 3.6.

Figure 3.6: Test circuit for parallel arc cable cutting test[6]

Another difference is the test apparatus, T, which is shown in Figure 3.7.

Figure 3.7: Test Apparatus[6]

The steel blade should be 3 mm thick with approximate dimensions of 32 mm by 140
mm for a 230 V AFDD. Using the apparatus shown above, the blade needs to be positioned
in order to make a solid contact with one conductor and arcing contact is made with the
second conductor.[6]

Line impedance Z, shown in Figure 3.6, is used to adjust the test current when all
switches are in closed position. While test switches S1 and S3 are in the closed position,
the blade is forced to cut through the insulation therefore, blade makes a solid contact
with one conductor and then point contact with the other conductor.[6]
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3.2. Measurement Setup

AFDD needs to clear an arc fault according to values given in Table 3.2 which occur
in a period of 0.5s.

3.2 Measurement Setup

The test circuit is adopted from section 3.1.3.1 with minor differences to capture the
current waveform. Figure 3.8 shows the test circuit used in measurements. Carbonized
cable specimen is prepared according to Section 3.1.1.

Figure 3.8: Test Circuit

High voltage power sourced used for preparing the cable specimen and the box for easy
replacement of cable specimen and safety are shown in Figure 3.9.

Figure 3.9: High voltage power source and safety equipment
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Two different set of measurements were used to design the algorithm proposed in
Chapter 4. The main difference is the sampling frequency of high speed data acquisi-
tion devices. In order to make a preliminary design and to investigate the feasibility of
machine learning classifiers for AC arc fault detection, an oscilloscope with 5MHz sampling
frequency was used to gather the data. Therefore, it covers a bandwidth up to 2.5MHz.

After preliminary work is completed, an oscilloscope with a higher sampling frequency is
employed. Sampling frequency of oscilloscope is 62.5MHz, therefore, measurements covered
a bandwidth of 31.25MHz which is sufficient to cover the required bandwidth to design a
detection algorithm. This setup is more suitable for arc fault detection research since noise
generated by arcing appears also in higher frequencies than 2.5MHz. Equipment list used
in these experiments are given in Table 3.3.

Test Equipment Specifications
Oscilloscope Tektronix 5 Series Mixed Signal Oscilloscope (62.5 Msps)

Current Probe Tektronix TCP0020 50 MHz 20A Current Probe
High Voltage Power Source Technix - 10 kV, 300 mA

High Voltage Test Cage Sefelec
Fume Extractor Weller - WFE2ESKIT1

Table 3.3: Equipment list used in measurements

This measurement setup enhanced measurement capabilities since it covers a band-
width up to 31.25MHz and gives more freedom to observe and manipulate data onboard.
Also, oscilloscope used for the second dataset calculates fast fourier transform that can be
either used to inspect the data onboard or to save it and use after. FFT computed by os-
cilloscope is only used for inspection purposes. All the signal processing work is completed
in MATLAB which is explained in more detail in Chapter 4.

3.3 Measured Loads and Analysis

Table 3.4 shows the loads tested in the first dataset that measured with 5MHz sampling
rate.
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Measured Load Type Load Name
SMPS(p-pfc) Power Drill

SPIM(Directly Desk Fan
Connected Motor)

Resistive Heater
Lighting Fleurescent
Resistive General Incandescent Lamp

Table 3.4: Measurements for first dataset

Since the measurements for first dataset were only used for preliminary work and invest-
igation of feasibility, they are not explained in the following sections. Only measurements
in the second dataset which are shown in Table 3.5 are explained.

Due to time and resource limitations, it was not possible to measure all different cat-
egories stated in Figure 2.8. However, most challenging loads in terms of arc fault detection
were used in experiments. Loads are selected according to their usage statistics. Most sold
loads in Czech market were chosen. Measured loads that are used in design of detection
algorithm are given in Table 3.5.

Measured Load Load Type

Heaters Resistive Load

LED Energy Efficient Lighting

Fluorescent Lamp Energy Efficient Lighting

Cultivator Universal Motor

Power Supply Switched Mode Power
Supply with a-PFC

Heaters with Dimmer Resistive Load

Table 3.5: Measured Loads by Group

The same number of measurements were planned to be taken for arcing and normal
working conditions of different loads. However, it is simpler to capture normal operation
of a load since there is no need for preparation of the cable specimen. Therefore for some
loads, number of measurements with an arc fault are less than normal operation.

3.3.1 Heaters

Resistive loads are the easiest load types for arc fault detection because of their consistent
and unique characteristics. Additionally, they do not contribute to nuisance tripping. In
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the following table, measured resistive loads(heaters) and their combinations are given.

Measured Load Power Current Number of
(by name) (W) (A) Measurements

Sahara 400 1.739 42

Sahara+Eurom 900(400+500) 3,913 42

Sahara+Concept 1150(400+750) 5 42
Sahara+Tristar 1600(400+1200) 6.957 42

Tristar+Concept 2050(1200+850) 8.913 42
Eurom+Tristar+Concept 2550(500+800+1250) 11.087 42
Eurom+Sahara+Tristar 3350(500+400 14.565 42

+Concept +1200+1250)

Table 3.6: Resistive Loads used in measurements in details(Heaters)

Two different types of measurements are done for every combination of heaters. One is
to observe current waveform in normal working condition and the other is to observe current
waveform of the load with a series arc. Figure 3.10 and Figure 3.11 show the regarding
waveforms of heater with the lowest power consumption(400W) and the combination of
heaters with the highest power consumption(3350W). For the case with series arc fault,
shoulders at the zero crossings are visible without further analysis. Also, it is observed
that characteristics of a resistive load for arcing and non-arcing do not show remarkable
changes based on the power consumption.

Figure 3.10: Current waveform of electrical heater(400W)(Red: Arcing, Blue: Non-arcing)
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Figure 3.10 is the measurements of the heater with lowest power consumption, 400W.
Figure 3.11 shows the measurement of combination of heaters with a power consumption
of 3350W in total.

Figure 3.11: Current waveform of electrical heaters(3350W)(Red: Arcing, Blue: Non-
arcing)

As it can be seen from Figure 3.10 and 3.11, when arc distinguishes and re-ignites
around zero-crossings, it causes shoulders to appear in the waveform and these are visible
by eye inspection without a need of further analysis.

3.3.2 Switched Mode Power Supply(SMPS)

Two different type of measurements are done for two different combination of SMPSs. One
is to observe current waveform in normal working condition and the other is to observe
current waveform of the load with a series arc. Loads are selected based on their avail-
ability on the market. Two different coolers that are widely used in computers are used
in measurements. One type of measurements is done with one load which is Cooler Mas-
ter(600W) and second type is combination of two SMPSs with a-PFC which are Cooler
Master(600W) and Platimax(600W), therefore, total power is 1200W in total. If a series
arc occurs, current waveform of a power supply with active power factor correlation differs
remarkably compared to current waveform under normal working conditions. Figure 3.12
shows the current waveform of the 600W switched mode power supply with active power
correlation with and without arcing whereas Figure 3.13 shows the current waveform of
the 1200W switched mode power supply with active power correlation with and without
arcing.
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3. AFDD Tests and Measurements

Figure 3.12: Current waveform of SMPS(Cooler Master) with A-pfc(600W) (Red: Arcing,
Blue: Non-arcing)

Figure 3.13: Current waveform of SMPSs(Cooler Master+Platimax) with A-pfc(1200W)
(Red: Arcing, Blue: Non-arcing)

3.3.3 Universal Motor

Current waveform of a load(Cultivator) that contains an universal motor is given in Figure
3.14. Shoulders at zero-crossings are visible. Two different combination of loads with
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universal motors were tested. Loads are chosen by their usage statistics. These are widely
used loads in Czech Republic and Europe.

First load is a single 1400W cultivator, and the second load is a combination of cultivator
and vacuum cleaner(2600W in total).

Figure 3.14: Current waveform of Universal Motor(Cultivator)(1400W)(Red: Arcing, Blue:
Non-arcing)

In Figure 3.15, two loads which are cultivator and vacuum cleaner are combined.
Shoulders near zero-crossing are more visible in Figure 3.16 compared to Figure 3.15.
Therefore, it is concluded that increasing power demand of loads makes shoulders around
zero-crossing more visible which is one of the very important characteristics of an arc fault.
Shoulders near zero-crossings appear on most the loads, however they are much visible in
universal motors, especially, when power consumption is relatively higher.
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3. AFDD Tests and Measurements

Figure 3.15: Current waveform of Universal Motor(Cultivator+Vacuum
Cleaner)(2600W)(Red: Arcing, Blue: Non-arcing)

3.3.4 Light Emitting Diode(LED)

Measured combinations of LEDs and their specifications are given in Table 3.7.

Measured Load Power Current Number of
(by name) (W) (A) Measurements

1xLED MAX 44 0.19 39
3xLED MAX 132 0.57 39
5xLED MAX 220 0.95 39
10xLED MAX 440 1.9 39

10xLED MAX+Tristar Heater 1240 4 39

Table 3.7: Energy efficient lighting loads used in measurements in details(LEDs)

Measured LEDs has different cable lengths in the measurement circuit to inspect the
effect of cable lengths. However, no difference is observed. Figure 3.16 shows the current
waveform of LED under normal operation and with series arcing. Differences around
zero-crossings are visible. When arcing distinguishes and reignites, current waveform is
remarkably different. Also, there are peaks which do not happen under normal working
conditions.
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3.3. Measured Loads and Analysis

Figure 3.16: Current waveform of LED(44W)(Red: Arcing, Blue: Non-arcing)

The current waveform of 10 LED MAX(440W) and Tristar(800W) is given in Figure
3.17. When compared to Figure 3.16, current consumption is much higher.

Figure 3.17: Current waveform of 10 LEDs+Tristar(1240W)(Red: Arcing, Blue: Non-
arcing)

In Figure 3.16, current values are much lower, therefore, spikes and noise on the current
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waveform is more visible. It is concluded that arcing causes remarkable changes in current
waveforms. That is also why LEDs have good classification rates that explained in Section
5 in detail.

3.3.5 Fluorescent Lamps

Fluorescent lamps are already noisy loads under normal working conditions. However,
current waveform is remarkably different while series arcing fault.

Figure 3.18: Current waveform of 10 Fluorescent Lamps(360W in total)(Red: Arcing, Blue:
Non-arcing)

As it can be seen from Figure 3.18, there are visible spikes in the current waveform
while arcing. This characteristic of fluorescent lamps makes them easier to classify when
an arc fault occurs. These differences while arcing and non-arcing, can be observed in
frequency domain too. Because of unique characteristics of fluorescent lamps, they are not
problematic loads for classification algorithm.

3.3.6 Dimmer

Dimmers are important because they manipulate the voltage waveform applied to a load.
A dimmer with 3 different settings is measured connected to a resistive load. Resistive
load(heater) is dimmed with 0, 90 and 180 degree and current waveforms are measured for
both arcing and under normal operation. Measurement results are as follows:
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3.3. Measured Loads and Analysis

Figure 3.19: Current waveform of Dimmer(Minimum setting(0 degree)) with 400W resistive
load(Heater)

Figure 3.20: Current waveform of Dimmer(Maximum setting(180 degree)) with 400W
resistive load(Heater)

Dimmers are one of the hardest loads to classify as arcing or non-arcing because dimmer
is used to change current waveform of connected load to manipulate the energy consumed
on the unit. However, difficulty of detection for dimmers is the way it manipulates the
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3. AFDD Tests and Measurements

current waveform. Dimmed resistive load’s current waveform and current waveform under
normal operation of resistive loads are very similar as it can be seen from Figure 3.19 and
Figure 3.20. Although there are differences while arcing and normal operation, general
characteristics are similar and it is another reason that makes dimmers hard to classify
while arcing.
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Chapter 4

Direct Digitization Approach

In this chapter, novel detection methodology that consists of direct digitization and super-
vised machine learning algorithms is introduced. Fundamentals of support vector machine
is presented. Generation of feature space and feature selection algorithms are explained.
Performance metrics are specified.

Existing arc fault detection methods are based on high frequency analog front end
monitoring/conditioning circuit combined with a microprocessor. Analog front end is de-
signed to monitor and to detect specific noise characteristics in different bands in frequency
spectrum. The information used in analog front end is heuristically found and then imple-
mented on the analog circuit.

Existing algorithms used in detection are well established and are optimized to detect
most of the arc faults successfully. Also, they are designed in a way to distinguish between
hazardous and non-hazardous sparks in the circuit. However, introduction of new kinds of
loads, cheap and noisy components or power line communication devices cause robustness
issues. Robustness issues result in either nuisance tripping that causes economical loss
because the circuit is de-energized unnecessarily, whereas not tripping when it is necessary
causes lack of protection.

Price of high speed acquisition devices are decreasing constantly in recent years and
they are expected to be cheaper in the future. In the light of this knowledge, it becomes
feasible to employ direct digitization instead of analog front end since the same information
used in analog circuits is also achievable by direct digitization. Using direct digitization
has advantages compared to analog front end. It is easier to modify detection algorithms
and it gives more freedom on signal processing. Since more types of information can be
gathered using direct digitization, it allows a various number of algorithms to implement for
detection. However, analog circuit based solutions are much cheaper to produce therefore,
analog front end is more feasible as of today for industrial usage.
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4. Direct Digitization Approach

To analyze and to design an algorithm for arc fault detection, arc faults needs to be
investigated in detail. There are two possible ways to achieve deep understanding of arcing
phenomena. The first way is to construct an arc model which requires deep understanding
of arc phenomena, therefore, highly skilled human resource and time. The second way is to
use real measurements explained in chapter 3. Using real measurements is more suitable
methodology for the context of this thesis because arc model is already a complex task
itself to complete in limited time whereas using measurements are easier, much faster and
more accurate for the measured load types.

General system diagram for proposed methodology for AC arc fault detection is given
Figure 4.1.

Figure 4.1: General System Diagram of Designed Method

Arc fault detection is a binary classification task which is a task of classifying the
elements of a given set into two groups (predicting which group each one belongs to) on
the basis of a classification rule.[24] For the context of this thesis, these groups are features
extracted from captured current waveforms with series arc fault that explained in Section
2.1.3 and normal working conditions of different loads.

Informative features extracted from measurements with suitable methods allows us to
employ so-called learning from examples paradigm. The crucial point about the learning
from examples paradigm is that the number of measurements needs to be sufficiently high
to cover all real life scenarios. Otherwise, algorithm trained using a small portion of real
life scenarios can achieve successful performance metrics in the design phase however, they
will not work sufficiently after implementation on the hardware. This is because, they are
designed based on the measurements taken but not for the real situation, i.e feature space
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is not sufficiently rich. Therefore, quality and number of measurements have a crucial
importance for success rates of designed algorithms for the implementation phase.

Feature extraction is another crucial task to design a successful classifier. It is also
crucial in the phase of implementation on hardware . It is because if suitable features are
not selected from feature space, namely all the bandwidth used for detection, detection
algorithm works with both informative and uninformative data, therefore it is needed to
process more data then necessary. It is not feasible in terms of computational complexity
and it has other drawbacks such as:

1. It decreases accuracy of machine learning algorithm

2. It increases training time

3. It can cause overfitting

These drawbacks and benefits are investigated in more detail in section 4.2.1.

For the context of arc fault detection algorithm, selection of features simply means
selection of proper bands that can be informative enough for classification. This is one of
the main purposes of this thesis because an algorithm that is capable of choosing informat-
ive bands automatically for classification will ease the design of future algorithms, whereas
current designs are based on expert knowledge and heuristic data. Proposed metaheuristics
are investigated in section 4.2.1.1 and 4.2.1.2.

The goal of binary classification task is to learn a function F (x) that minimizes the
misclassification probability P{yF (x) < 0}, where y is the class label with + 1 for positive
and 1 for negative. [29] There are numerous effectual binary classification algorithms such
as kernel methods[30] , ensemble methods[31] , and deep learning methods[32] . Support
vector machine, SVM,[33] is a powerful kernel method. Boosting, [34],[35] and random
forest (RF) [36] fall into ensemble methods. Deep learning methods are based on artificial
neural networks (ANNs) [37].

According to [65], k-nearest neighbors algorithm (k-NN) is a non-parametric method
used for classification and regression. [64]. The input consists of the k closest training
examples in the feature space. The output is a class membership. An object is classified
by a plurality vote of its neighbors, with the object being assigned to the class most common
among its k nearest neighbors where k is a positive integer.[65]

All classification techniques mentioned above have advantages and disadvantages. These
advantages and disadvantages have been taken into consideration according to the analyzed
data. SVM, which is introduced in more detail in section 4.1, performed well for a wide
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range applications such as finance, time series prediction[38], biological data processing for
medical diagnosis[40], face recognition[41] and so on.Particularly, performance of SVM is
proven when analyzed data is irregularly distributed or distribution of data is unknown.
Main advantages of SVM algorithm in context of this thesis are stated as follows:

1. SVM assumes that classification data is linearly separable. By using the kernel
trick which is to transform data into another dimension that has a clear dividing
margin between classes of data [42](see section 4.1), SVM gains the capability of
nonlinear classification whereas SVM without using kernel trick works as a linear
classifier. By using kernel function, SVM performs nonlinear classification tasks even
for nonlinearly dependent data and for data that has different functional forms.[43]

2. Kernel function implicitly contains nonlinear transformation inside, therefore, it is
not required to make any assumptions on functional form of the transformation to
make the data linearly separable. Transformation already runs implicitly on a proven
robust theoretical background, therefore, a priori work is not needed on that.[44]

3. SVM provides an optimal and unique solution because the optimality problem is
convex. SVM differs from neural networks in this context because neural networks
can hand in various number of solutions that can possibly lie on a local minima
therefore, robustness issues can be faced when different datasets are provided.

4. If parameters are properly set, SVM provides a good generalization error(out-of-
sample error) which is a measure of how accurately an algorithm is able to predict
outcome values for previously unseen data.[45] In explanation, if generalization grade
is appropriate, SVM can be robust even if the training set is biased.

4.1 Fundamentals of SVM

The support vector machine was introduced by Vladimir N. Vapnik and Alexey Ya. Chervon-
enkis in 1963[33] and it has been developed through the years. In 1992, Bernhard E. Boser,
Isabelle M. Guyon and Vladimir N. Vapnik suggested a way to create nonlinear classifiers
by applying the kernel trick to maximum-margin hyperplanes. Statistical learning theory
developed by Vladimir Vapnik and co-workers at ATT Bell Laboratories in 1995 improved
the algorithm and transformed the algorithm to it’s final version.

The support vector machine is a linear classifier that assumes training data is linearly
separable. In [33], it is stated that SVM chooses the particular classifier which separates
the classes (+1,-1) with maximal margin. Optimal hyperplane which separates the classes
is defined by a weight vector W and a bias term b as:

wTx+ b =

{
≥ 1, class +1
≤ −1, class -1

(4.1)
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Figure 4.2 shows separating hyperplane in 2-dimensional space including so-called sup-
port vectors and margin.

Figure 4.2: Optimal separating hyperplane, support vectors and decision bound-
ary(Separable case)

The margin is defined as the width of the largest tube not containing samples that can
be drawn around the decision boundary and it can be represented as follows.

Margin =
2

‖~w‖
(4.2)

To achieve the widest separation, it is needed to maximize margin. In order to maximize
the margin,‖~w‖ is minimized. Therefore, the maximum margin can be achieved by solving
the quadratic optimization problem below.

Min
1

2
‖~w‖2 (4.3)

s.t yi(W
Txi + b) ≥ 1 (4.4)

In equation (4.4), yi is 1 for samples from class (+1) and -1 for samples from class
(-1). Since this is a constrained optimization problem, Lagrangian multiplier is used for
solution.

L =
1

2
‖~w‖2 −

∑
αi[yi(~w · ~xi + b)− 1] (4.5)
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∂L

∂ ~w
= ~w −

∑
αiyixi = 0 =⇒ ~w =

∑
i

αiyixi (4.6)

∂L

∂b
= −

∑
αiyi = 0 =⇒

∑
i

αiyi = 0 (4.7)

If equation (4.6) and (4.7) are inserted into (4.5). L is as follows where αi is Lagrangian
multiplier.

L =
∑
i

αi −
1

2

∑∑
αiαjyiyjxixj where αi ≥ 0 (4.8)

Equation (4.9) shows that optimization depends on only dot product of pairs of samples
xixj because the other terms in the equation are constant. By inserting the findings in
(4.6) and (4.7) into decision rule (4.1), following decision rule is obtained where every term
except ~xi~u are constant.

∑
αiyi~xi~ui + b =

{
≥ 1, class +1
≤ −1, class -1

(4.9)

When optimization problem is solved, training points with α∗i > 0 are the support
vectors(SVs), and w∗ is calculated as follows:

w∗ =
∑
i

α∗i yixi (4.10)

Kernel function is used to add the ability of making nonlinear classification to SVMs.
Kernels are used to map the input data to a new multidimensional space. Feature vectors
are mapped into the new image space by using mapping K. SVM performs linear clas-
sification task in the newly mapped image space, however, this corresponds to nonlinear
classification in the original space. Widely used kernel functions are given as follows:

1. Polynomial Kernel: K(xi, xj) = (xi · xj + 1)p

2. Radial Basis Function Kernel: K(xi, xj) = e−γ‖xi−xj‖
2

where γ > 0

3. Sigmoid Kernel: K(xi, xj) = tanh(ηxi · xj + v)
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4.2 Feature Extraction

In order to process the data and to investigate the noise characteristics of different loads
in normal working condition and with an arc fault; as well as to construct a suitable
feature space to train machine learning algorithms, it is needed to process the data which
is current waveforms of loads. Domain of analysis is important since the quality, namely
informativeness of feature space is important. Following domains can be employed to create
the feature space for the machine learning algorithms.

1. Time-domain

2. Frequency Domain

3. Time-frequency Domain

There are numerous papers in literature that propose a detection algorithm using each
of the three domains above. [47], [48], [49] [50] propose frequency domain based approaches
for different applications. [47], uses FFT to obtain signal energy and calculates the change
in it for arc faults in photo-voltaic systems. This approach is similar to the approach applied
in this thesis with a difference in analysis of band selection and detection methodology.
In this thesis, given approach to determine the frequency bands are done using feature
selection algorithms in section 4.2.1.

[48], proposes a method for arc fault detection using FFT and wavelet packet decom-
position. The drawback of using FFT is stated as an inherent trade-off between time and
frequency resolution. Using FFT also gives global frequency components of a signal without
time information.[48] In order to have a better resolution of frequency, the time window
needs to be extended while the sampling frequency is fixed. The most crucial finding of
this paper is the duration of the time window for FFT, which is stated as 200 ms based
on extensive analysis. Therefore, it has to be taken into consideration while designing the
detection algorithm because longer time used for signal processing means there is less time
available for the detection algorithm to run. This trade off has be taken into considera-
tion in the design process of general detection methodology. Machine learning classifiers,
especially SVM, are advantageous from this point of view because although SVM can be
computationally expensive in the training phase, it does not require high computational
power as a classifier, therefore it is fast compared to most other algorithms proposed in
literature. Therefore, analysis done in [48] contributes to prove feasibility of SVM classifier
to use for AC arc fault detection based on frequency domain analysis.

[49] and [50] also uses frequency domain analysis but for DC arc fault detection. The
arc characteristics observed in AC and DC applications has differences however, they also
use information extracted from current waveforms by applying frequency domain analysis.
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It is more important the quality of feature space for detection algorithm and construc-
tion of the feature space according to needs than the number of signal processing techniques
applied. As it can be seen from the studies above, all the signal processing methods can be
informative enough to design an arc fault detection algorithm if the information extracted
using any method is sufficient for classification. However, time domain based solutions are
mostly applied for DC arc fault detection algorithms and it is not a common approach
employed according to extensive literature research, therefore, this approach is not invest-
igated in this thesis.

In order to construct the feature space using frequency domain analysis, it is first
needed to perform the Fourier Analysis. Discrete Fourier Transform(DFT) is the most
important discrete transform, used to perform Fourier analysis.[46] In this thesis, single-
sided spectrum of current waveforms of different loads are computed on MATLAB and
single-sided spectrum is obtained for further processing. Then, the main component of
single sided spectrum and harmonics are removed since they don’t contain any valuable
information but mask valuable information to be used in designed algorithm.

The signal processing chain employed in this thesis is given in Figure 4.3. Figure 4.4
shows a single sided spectrum of a heater. In Figure 4.5 harmonics related to line frequency
are removed. Finally, in Figure 4.6, one element of feature space with 1000 features that
include total energies when frequency spectrum divided to 1000 is shown.

Figure 4.3: General Diagram of Signal Processing Chain

Residential AC supply is 50Hz, 50Hz has the biggest amplitude compared to higher
frequencies. There are also harmonics associated with the line frequency, 50Hz. However,
frequency spectrum around 50Hz and associated harmonics are not informative since all
the loads work with the same line frequency. Therefore, line frequency and associated
harmonics need to be removed for further processing. Figure 4.4 shows single sided spec-
trum of current waveform of heater under normal working conditions from 0Hz to 400Hz
which is an interval that is already not used in phase of design but shows an illustration
of harmonic removal process.
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Figure 4.4: Single-sided spectrum of current waveform of heater without harmonics under
normal working conditions (0-400Hz)

In order to construct a feature space to train machine learning algorithm, spectrum data
obtained by removing the line frequency and harmonics is divided into intervals of different
bandwidths. Total energy in these intervals are calculated. If these intervals cover a wide
bandwidth, then noise data is eliminated in the intervals because noise levels are expected
to be relatively small compared to total energy in a wide frequency range. If intervals are
too small, then it is computationally ineffective for feature selection algorithms that will
be explained in more detail in section 4.2.1. Therefore, this trade-off has to be taken into
consideration while making a decision on the length of intervals. The spectrum is divided
into 100 and 1000 intervals and total energy for both intervals are calculated. However,
after experiments, it is observed that using 1000 features is more suitable because when
100 features are employed, frequency bands are too wide to be informative, namely, noise
levels are not distinguishable in a wide range of spectrum.

Last step of obtaining the feature space is normalization of features, which is simply
done by dividing all the total energies in intervals to the amplitude at the line frequency.
This is needed to eliminate the differences caused by different powers of different loads.
Normalization provides a feature space depending on the relative normalized amplitudes
by removing the effects of different power demands of loads.

Figure 4.6 shows the normalized features for one load in an interval of 21MHz.
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Figure 4.5: Feature vector in 2D for one load(heater) from 3MHz to 30 MHz, Feature
Index: 98-1000

Figure 4.6: Normalized feature vector in 2D for one load(heater) from 3MHz to 30 MHz,
Feature Index: 98-1000
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4.2.1 Feature Selection

Feature selection has a significant importance in machine learning, especially when handling
with high dimensional data.

In order to find the most correlated frequency bands that are informative for classifica-
tion, there are many feature selection algorithms available such as neighborhood component
analysis or sequential feature selection. Extracting relevant features for a given dataset
with labels are crucial because feature selection:

1. Improves Accuracy: This is because misleading data can decrease the modelling ac-
curacy of machine learning algorithms therefore the algorithm performs less because
of the uninformative data for classification

2. Reduces Training Time: With a smaller feature space, it is faster to train the machine
learning algorithm and training is less computationally expensive.

3. Reduces Overfitting: When feature space is smaller, it is less likely to make a decision
based on uninformative data

There are two different feature selection metaheuristics that are widely used in literature
which are filter approach and wrapper approach. There are also hybrid methods that are
designed for different purposes to increase robustness and accuracy. Figure 4.7 shows flow
diagrams of these approaches.
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Figure 4.7: Feature Selection Approaches: a) Filter Approach, b) Wrapper Approach

Feature selection approaches employed in thesis are introduced in Section 4.2.1.1 and
Section 4.2.1.2.

4.2.1.1 Neighborhood Component Analysis

Neighborhood component analysis (NCA) is a non-parametric and embedded method for
selecting features with the goal of maximizing prediction accuracy of regression and clas-
sification algorithms.[51] One drawback of neighborhood component analysis is the com-
putational cost, but there are proposed methods such as fast neighborhood component
analysis to decrease computational cost by applying statistical tricks and prior calcula-
tions. [52]. However, computational cost of NCA is acceptable for this thesis since feature
space does not consist of very high number of features for NCA, namely, maximum 1000
for a bandwidth of 31.25Mhz.

Neighborhood component analysis algorithm[53] starts by building a full graph with
each feature as its node. Weight of each edge between any nodes are denoted as pij. pij is
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the probability that feature xi selects xj as its neighbor and it is calculated as follows:

pij =
exp(−d2Aij)∑
t∈Ni

exp(−d2Ait)
(4.11)

Ni is the set of neighbors of xi and d is the distance between two features. Then,
neighborhood component analysis learns a linear transformation A which maximizes the
log likelihood so that using transformation, each feature chooses the features with same
labels as itself as neighbors.[54] This objective function is represented as follows:

maxL(A) =
∑
i

log(
∑
j∈Ni

1{yi = yj}· pij) (4.12)

4.2.1.2 Sequential Feature Selection

Sequential feature selection algorithm used in this thesis selects a subset of feature space
that has the best classification metrics for a given label of y, which is the class label by
sequentially selecting until classification metrics do not improve. Rows of feature space cor-
responds to frequency spectrum divided into intervals and columns,therefore corresponds
to total energy in that specific band for each measurement.

The algorithm starts with an empty feature set, then it creates candidate subsets by
sequentially including each feature not selected yet to empty set. With every iteration, the
algorithm performs a 10-fold cross-validation which is introduced in more detail in section
4.4.3.

According to [55], there are four key steps in procedure of sequential feature selection
which are:

1. Subset generation

2. Evaluation of Subset

3. Stopping Criteria

4. Result Validation

These key steps can be designed in different ways according to needs however, general
procedure is introduced in Figure 4.8 as follows:
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4. Direct Digitization Approach

Figure 4.8: Sequential Feature Selection General Procedure

4.3 SVM Training

All the calculations and training of support vector machine and other machine learning
algorithms were implemented using MATLAB statistics and machine learning toolbox.
General design process is demonstrated in Figure 4.9.

First step of the design process is to define the requirements. Secondly, it is needed
to measure different loads in sufficiently enough numbers. Generation of feature space is
very critical step because, accuracy of classifiers are heavily depends on feature space. It is
needed to consider possible situations that can be faced by a load and then to generate the
feature space because if feature space is not properly generated, then even if classification
algorithm performs well in its feature space, it will not have same classification rates
after implementation on hardware. All the generated features are stored in a database to
use after if needed. After selecting the features by using metaheuristics in Section 4.2.1,
classifier is trained and optimized. Grid-search is used to find optimal parameters of the
classifiers. Grid-search is a way to find to optimal parameters of a classifier but parameters
found by grid-search depends on the range of the grid. In order to prevent doing more
time-consuming processes as shown in Figure 4.9, firstly parameter optimization is redone
because it is much simpler compared to other tasks in design process. The flow diagram is
applied until successful classifier is achieved.

50



4.4. Performance Evaluation

Figure 4.9: Classifier Training Process

4.4 Performance Evaluation

Performance of designed classifiers has to be evaluated using suitable metrics and analysis.
There are measures such as misclassification rate and metrics derived from confusion matrix
given in Table 4.1. These metrics are introduced in more detail in Section 4.4.1. Also, a
basic methodology to evaluate the classifier is to use cross-validation technique which is
explained in Section 4.4.3.

It is needed to avoid overfitting or underfitting which decreases the generalization ability
of classifier that’s explained in chapter 4, in order to obtain a successful design and to set
the regarding parameters of the machine learning algorithm. Overfitting or underfitting
need to be avoided since the overfitted classifier performs well on training data, however
it does not perform the same way for unseen new data due to its low generalization grade.
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This phenomena is shown in Figure 4.10.

Figure 4.10: Testing and training error as a function of model complexity[56]

As it can be seen in figure 4.10, training error decreases with increasing model com-
plexity but testing error is minimal to a certain degree of model complexity. [57] The way
of checking whether the classifier is overfitted or not is to search for another classifier for
the same domain such that the training error is higher but testing error is lower. If such
a classifier exists, then it means that classifier is overfitted.

4.4.1 Performance Metrics

In order to evaluate performance of classifiers, performance metrics derived from the con-
fusion matrix are employed. The confusion matrix is shown in Table 4.1.

Condition Positive Condition Negative

Predicted Condition Positive True Positive(TP) False Positive(FP)
Predicted Condition Negative False Negative(FN) True Negative(TN)

Table 4.1: Confusion Matrix

Metrics derived from confusion matrix are as follows:
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1. Positive Predictive Value: PPV = TP
TP+FP

The positive predictive value(PPV) is the proportion of true positive predictions
to all positive predictions of a classifier.[59]

2. Negative Predictive Value: NPV = TN
TN+FN

The negative predictive value(NPV) is the proportion of true negative predictions
to all negative predictions of a classifier.[59]

3. False discovery rate: FDR = 1− PPV = FP
TP+FP

The false discovery rate is the proportion of false positive predictions to all predicted
condition positives of a classifier.[59]

4. False omission rate: FOR = 1−NPV = FN
TN+FN

The false omission rate is the ratio of false negative predictions to all predicted
condition negatives of a classifier.[?]

5. Accuracy: ACC = TP+TN
TP+TN+TN+FN

Accuracy is the ratio of correctly classified predicitons among all predictions.[59]

6. Prevalence: Prevalence = TP+FN
TP+TN+TN+FN

Prevalence is the ratio of condition positive which is sum of true positives and false
negatives among all predictions.[59]

7. True Positive Rate: TPR = TP
TP+FN

True positive rate, also called as sensitivity, recall or probability of detection in some
fields[60] is the proportion of actual positives that are correctly identified as such.[59]

–

8. False Positive Rate: FPR = FP
FP+TN

False positive rate, also called as fall-out or probability of false alarm is calculated
as the ratio between the number of negative events wrongly classified as positive and
the total number of actual negative events.[59]

9. False Negative Rate: FNR = FP
FP+TN

False negative rate, also called as fall-out or probability of false alarm is the propor-
tion of positives which yield negative test outcomes with the test, i.e., the conditional
probability of a negative classification result given that the condition being looked
for is present.[59]
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10. True Negative Rate: TNR = FP
FP+TN

True negative rate also called as specificity measures the proportion of actual negat-
ives that are correctly classified as such (e.g., the percentage of non-arcing waveforms
that are correctly classified as non-arcing).[59]

4.4.2 Cross-validation

According to [11], cross-validation, also called rotation estimation is one of numerous model
validation methodologies used to identify how a classifier will generalize to an independent
dataset. It is employed in the design process of machine learning algorithms to investigate
the ability of the classifier on unseen data. The way it works is to use a limited subset of
dataset for training, and to test the performance of it on the data reserved for test.

Cross-validation has a single parameter, k, that is the number of folds that a dataset is
to be separated into. It is a very popular methodology because it is very simple to employ
and it gives a better understanding of the classifiers performance compared to simpler
methods such as train/test split. [66]

Procedure is as follows:

1. Seperate dataset into k random subsets with same amount of data

2. For each group, take one out as a hold to use as a test set, then use all others as a
training set

3. Train a model using the training set and test it with the test set

4. Record the classifier performance

5. Repeat this procedure from 2nd step for each fold

6. Calculate average loss by averaging k different performance metrics

Each data in the dataset should be assigned to only one group and the group that
particular data point belongs to should not change through the procedure. This means
that each data point is used once in testing and k-1 times for training the classifier.

In this thesis, separation of groups are done in a way that all different load types have
an equal number of data in the test and training sets. Namely, data is randomly separated
into groups but subgroups are also taken into consideration.
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Chapter 5

Results

In this chapter, achieved results by using different supervised machine learning classifiers
are presented. Selected features for SVM are explained. Achieved classification results
by using selected features are compared and best classifier is decided based on defined
performance criteria in Chapter 4. SVM with RBF kernel outperformed all classifiers with
93% classification rate .

As initial work, support vector machine classifiers were trained using all the fea-
tures(1000 features for a bandwidth of 31MHz). Achieved bandwidth is 31.25MHz, how-
ever, bandwidth up to 31MHz is used. Every element of feature space contains the total
energy in an interval of 30kHz. Data used for testing purposes were not included in any
phase of training of classifiers. Therefore, it is unseen data which is 10% of whole data
that are reserved for testing purposes for obtained classifiers. 10-fold cross validation is
applied and 10-fold loss were calculated according to methodology introduced in Section
4.4.2.

Table 5.1 shows the confusion matrix using linear kernel.

Condition Positive Condition Negative

Predicted Condition Positive 21 10
Predicted Condition Negative 6 18

Table 5.1: Confusion Matrix-SVM(Linear Kernel)

10-fold loss of support vector machine with linear kernel is 29%. Therefore, classification
rate is 71%. However, it is also inspected that most of the misclassified data are composed
of dimmers and fluorescent lamps whereas, classification was successfully done most of the
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LEDs, resistive loads, universal motors and power source with active power correlation.
29% misclassification rate is an expected result since data is not linearly separable. Also, it
is observed that while arcing, current waveform of dimmers with resistive load is similar to
current waveform of resistive loads in normal operation without arcing. This is the reason
that dimmers with resistive loads are hard to classify, especially using SVM with linear
kernel.

Table 5.2 shows classification results of SVM trained using second order polynomial
kernel. Polynomial kernel allows support vector machine to make nonlinear classification
to some degree. Benefit of employing nonlinear classifier can be observed from classification
results.

Condition Positive Condition Negative

Predicted Condition Positive 21 9
Predicted Condition Negative 6 19

Table 5.2: Confusion Matrix-SVM(Polynomial Kernel(degree 2))

10-fold loss using second polynomial kernel is 27%. It is also inspected that most of the
misclassified data are composed of dimmers and fluorescent lamps whereas, classification
was successfully done most of the LEDs, resistive loads, universal motors and power source
with active power correlation. Therefore, in terms of accuracy for different types of loads,
this classifier shows same characteristics with SVM with linear kernel. Classification rate
is increased by 2% compared to classifier with linear kernel. This can be further increased
by increasing the polynomial order however, it is needed to consider to avoid overfitting.

Table 5.3 shows classification results of SVM trained using third order polynomial
kernel.

Condition Positive Condition Negative

Predicted Condition Positive 22 9
Predicted Condition Negative 5 19

Table 5.3: Confusion Matrix-SVM(Polynomial Kernel(degree 3))

10-fold loss using third order polynomial kernel is 25%. It is also inspected that most
of the misclassified data are composed of dimmers and fluorescent lamps whereas, classific-
ation was successfully done most of the LEDs, resistive loads, universal motors and power
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source with active power correlation. In terms of accuracy for different types of loads,
this classifier shows slightly better performance than SVMs with second order polynomial
kernel and linear kernel by 2% and 4% respectively. Polynomial kernel is not widely used
in literature. Increasing the polynomial order causes overfitting. Therefore, higher orders
are not implemented and not discussed in this thesis. The most important parameter of
polynomial kernel is order. Since, there is a fact that higher orders lead to overfitting, it is
not needed to apply grid-search or any other optimization algorithm on polynomial order.

Table 5.4 shows confusion matrix obtained by SVM classifier with radial basis function
kernel. Radial basis function has two parameters to tune which are C and γ. Parameter
γ can be considered as the inverse of the radius of influence of samples selected by the
model as support vectors.[62] The C parameter trades off correct classification of training
examples against maximization of the decision functions margin.[62] If C value is larger,
accepted margin is smaller if all training points are classified correctly by the decision
function. Therefore, smaller C implies a larger margin but with a trade-off with training
accuracy. Namely, when C is larger, classifier is more penalized for misclassified data
and hyperplane bends over around misclassified data points in order to obtain a better
classification result. However, it is not desired because it lowers the generalization ability
of classifier and it decreases the performance on unseen data.

It is observed that for very small values of γ, classifier cannot capture the complexity of
data because it is inverse of standard deviation of radial basis function. Standard deviation
is used as a similarity measure between two different data. Very small γ value means an
RBF with a large variance. Therefore, two data points that are far from each other are
classified in the same class. This is verified by decreasing γ and getting similar result with
linear kernel because when γ is very small, it behaves like a model with hyperplane that
separate center of pairs with high density in two different classes.[62]

Condition Positive Condition Negative

Predicted Condition Positive 26 5
Predicted Condition Negative 1 23

Table 5.4: Confusion Matrix-SVM(RBF Kernel)

As it can be seen from Table 5.4, classifier using RBF kernel outperforms classifiers with
linear and polynomial kernel. 10-fold loss is 11%. In order to optimize the parameters,
a logarithmic grid from 10−3 to 103 is applied for grid search. Best classifier is achieved
when C = 10 and γ = 1. It is also observed that higher values of both C and γ cause
overfitting. Performance of classifier can be slightly increased using a more detailed grid
around achieved optimal parameters. Therefore, it can be said that designed classifier is
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suboptimal in terms of the grid used. However, SVM has better generalization performance
compared to most of the classifiers as stated in Chapter 4, therefore, even if it is optimized
again with a grid around C = 10 and γ = 1, the increase in performance will be minimal.

K-nearest neighbor classifier has one parameter to set which is k. 3 different classifiers
are trained for different k values(2,3,5). Table 5.5 shows the confusion matrix of 2-nearest
neighbor classifier. Classification rate is 75% which is similar to SVM with linear kernel.
Also, it is observed that wrongly classified data is composed of mostly resistive loads and
dimmers. The reason is the similarity between normal dimmer behaviour and resistive
load’s behaviour while arcing.

Condition Positive Condition Negative

Predicted Condition Positive 22 9
Predicted Condition Negative 5 19

Table 5.5: Confusion Matrix-k-nearest neighbors(k=2)

Table 5.6 shows the confusion matrix of 3-nearest neighbors classifier. Classification
rate is 71%. It has considerably lower performance compared to SVMs and the 2-nearest
neighbor. Wrongly classified data are composed of all loads except LEDs.

Condition Positive Condition Negative

Predicted Condition Positive 21 10
Predicted Condition Negative 6 18

Table 5.6: Confusion Matrix-k-nearest neighbors(k=3)

Table 5.7 shows the confusion matrix of 5-nearest neighbors classifier. Classification
rate is 69%.

Condition Positive Condition Negative

Predicted Condition Positive 20 10
Predicted Condition Negative 7 18

Table 5.7: Confusion Matrix-k-nearest neighbors(k=5)
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Decision tree is another classifier that are widely used in classification tasks. Different
decision trees are designed with different maximum number of allowed splits, namely,
first decision tree is designed without a limitation in maximum number of allowed splits.
Second decision tree has 7 allowed branches. Last decision tree has 11 maximum number
of allowed splits. However, it is very important to state that training sets for decision trees
and Adaboost are slightly different than training sets used for all other classifiers. In SVM
and k-nearest neighbors, algorithms are trained using all the bandwidth achieved, therefore,
1000 features that correspond to 31MHz bandwidth were used whereas frequencies lower
than 1MHz are excluded because of the reasons that are stated in Section 2.2 while training
decision trees and Adaboost algorithm.

Table 5.8 shows the confusion matrix of decision tree without a limitation in number
of splits. Classification rate is 80%. Number of splits are 32.

Condition Positive Condition Negative

Predicted Condition Positive 22 6
Predicted Condition Negative 5 22

Table 5.8: Confusion Matrix-Decision Tree

Table 5.9 shows the confusion matrix of decision tree with maximum allowed number
of splits is 7. Classification rate is 65%.

Condition Positive Condition Negative

Predicted Condition Positive 18 10
Predicted Condition Negative 9 18

Table 5.9: Confusion Matrix-Decision Tree-7 Splits

Table 5.10 shows the confusion matrix of decision tree with maximum allowed number
of splits is 11. Classification rate is 71%.

Condition Positive Condition Negative

Predicted Condition Positive 21 10
Predicted Condition Negative 6 18

Table 5.10: Confusion Matrix-Decision Tree-11 Splits
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Desion tree has a better performance than trained k-nearest neighbor algorithms. When
there is no limitation on number of splits, it has 80% classification rate which makes its
performance better than SVMs with linear and polynomial kernel.

Table 5.11 shows the confusion matrix of Adaboost algorithm. Classification rate is
82%.

Condition Positive Condition Negative

Predicted Condition Positive 21 4
Predicted Condition Negative 6 24

Table 5.11: Confusion Matrix-Adaboost

Adaboost performs better than k-nearest neighbors, decision trees and SVMs with
linear and polynomial kernel. Adaboost also has best false positive rate which is 3%
better than SVM with RBF kernel. This is an important performance metric because
of the consequences of nuisance tripping that explained in Section 2.3.3 in more detail.
Adaboost and SVM are two classifiers that have better generalization ability compared to
other designed classifiers in this thesis. In literature they showed different generalization
characteristics on different datasets. Therefore, 10-fold loss is an important indicator of
their generalization ability.

In order to evaluate the performance of classifiers and to compare, performance metrics
presented in Section 4.4.1 are calculated for all designed classifiers. Table 5.12 shows
performance metrics of different classifiers using all bandwidth.

Table 5.12 shows that, SVM with RBF kernel outperforms other classifiers with a clas-
sification rate of 89% when all bandwidth is used for training the classifiers(Lower than
1MHz is excluded in decision tree and adaboost). These performance metrics form a
basis for comparison for following section, where frequency bands are selected because the
objective of feature selection is to achieve the same or better classification performance
compared to using full bandwidth. It also makes it more feasible to employ general meth-
odology proposed in thesis for industrial applications because smaller bandwidth is more
achievable compared to using 31MHz bandwidth .
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Classifier ACC TPR SPC PPV NPV FPR FDR FNR
SVM(Linear) 0.71 0.78 0.64 0.68 0.75 0.36 0.32 0.22
SVM(Polynomial-2nd
order)

0.73 0.78 0.68 0.70 0.76 0.32 0.30 0.22

SVM(Polynomial-3rd
order)

0.75 0.81 0.68 0.71 0.79 0.32 0.29 0.18

SVM(RBF) 0.89 0.96 0.82 0.83 0.95 0.17 0.16 0.03
2-nearest neighbors 0.75 0.81 0.68 0.71 0.79 0.32 0.29 0.18
3-nearest neighbors 0.71 0.78 0.64 0.68 0.75 0.36 0.32 0.22
5-nearest neighbors 0.69 0.74 0.64 0.67 0.72 0.36 0.33 0.26
Decision Tree (Max-
imum number of split)

0.80 0.81 0.79 0.79 0.81 0.21 0.21 0.18

Decision Tree (Number
of split:7)

0.65 0.67 0.64 0.64 0.66 0.36 0.36 0.33

Decision Tree (Number
of split:11)

0.71 0.78 0.64 0.68 0.75 0.36 0.32 0.22

Adaboost 0.82 0.78 0.86 0.84 0.80 0.14 0.16 0.22

Table 5.12: Performance Metrics of Different Classifiers Using All Bandwidth

As it can be seen from Table 5.12, SVM with RBF kernel has the best classification
rate with 89%. Another important metric is false positive rate because of the consequences
of nuisance tripping that explained in Section 2.3.3. False positive rate of SVM with RBF
kernel is 0.17 which is the second lowest among all designed classifiers. 2-nearest neighbor
also performed similar to SVM with linear and polynomial kernels. However, performance
of k-nearest neighbors algorithms decrease while k increases. Therefore, it is concluded
that classification of data points on the boundaries of different classes are problematic and
generalization ability of k-nearest neighbors algorithm is not sufficient for such a dataset
where variance in data is high. Decision tree performs similar to k-nearest neighbors. Best
classification performance was achieved when there was no limitation on number of splits.
Using 32 splits, classification rate is 80% which makes decision tree the third best designed
classifier in terms of performance. Adaboost has 82% classification rate which is second
best performance among all classifiers. Impressive result achieved by adaboost is its false
positive rate which is 14% that makes adaboost the best classifier in terms of FPR.

SVMs have better performance metrics in general. Also, better generalization ability
of SVMs makes SVM with RBF kernel is the best choise among all designed classifier.
Therefore, in the following sections, features are selected in order to use with SVM and
results are given.
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5.1 Feature Selection

Different frequency bands are selected according to methodologies presented in Section
4.2.1. Combinations of these bands are used to train the classifiers. Quality of selected
bands is evaluated according to the performance of classifiers. Filter approach that intro-
duced in Section 4.2.1 employs a methodology that features are selected based on decision
rules in feature selection methodology. Therefore, performance of classifier is not a para-
meter for filter approach in the phase of feature selection whereas wrapper approach already
takes performance into account while selecting the features and it gives more robust and
guaranteed results in terms of resulting classifier’s performance.

In this thesis, forward sequential feature selection is applied. In forward sequential
feature selection, selected data is an empty matrix in the beginning. While algorithm
runs, it checks every combination of features by adding one by one and it selects the
features that give the biggest increase in performance until performance converges or until
all combinations are tried. Therefore, it does not lie on a local minima. Algorithm trains
a classifier for every combination of features, therefore, it is computationally expensive.
Backward sequential feature selection is another sequential feature selection method where
selected features set includes all features in the beginning, then they are removed one
by one for every iteration of algorithm. Therefore, it is less computationally expensive.
Backward sequential feature selection is not employed in this thesis but it stays a future
work to do.

Selected frequency bands by different algorithms(neighborhood component analysis and
sequential feature selection) for best classification performance, methodology of selection
and performance metrics of trained classifiers are given in the following sections.
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5.1.1 Neighborhood Component Analysis

Figure 5.1 shows feature weights which are their importance between input data and their
class labels around 5MHz(4.5MHz to 5.5MHz) for an interval of 1MHz divided in 30kHz
intervals.

Figure 5.1: Feature selection using NCA in 4.5MHz-5.5Mhz

In order to select the intervals, a threshold value for feature weights has to be decided.
When feature weight threshold is chosen 0.5x10−6 , there are 19 intervals to select and total
bandwidth used is 570kHz between 4.5MHz and 5.5MHz. When feature weight threshold
is chosen 0.25x10−6, there are 25 intervals to select and total bandwidth used is 750kHz
between 4.5MHz and 5.5MHz.

Figure 5.2 shows feature weights which are their importance between input data and
their class labels around 17MHz(16.5MHz to 17.5MHz) for an interval of 1MHz divided in
30kHz intervals.

63



5. Results

Figure 5.2: Feature selection using NCA in 16.5MHz-17.5Mhz

When threshold value is decided as 8x10−7, there are 19 features to select which corres-
pond to 570kHZ in total. When threshold value is decided as 7x10−7, there are 25 features
to select which correspond to 750kHZ in total.

Neighborhood component analysis is suitable to use for small bandwidths where vari-
ance of input data is relatively small. Total energy decreases proportionally while frequency
increases. Therefore, NCA is not suitable for selecting bands in the whole bandwidth. Fig-
ure 5.3 and Figure 5.4 prove that NCA is not suitable for selecting features from a wide
bandwidth since feature weights decrease proportionally while frequency increases and
NCA employs similarity measures to differentiate between input data. Therefore, it is not
possible to set a threshold value and select different features. Figure 5.3 shows feature
weights obtained by NCA from 15MHz to 23MHz.
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Figure 5.3: Feature selection using NCA in 15MHz-23Mhz

Figure 5.4 shows feature weights from 7MHz to 30MHz obtained using NCA.

Figure 5.4: Feature selection using NCA in 7MHz-30Mhz
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It is concluded that NCA is not suitable for selecting between all the features because
of the nature of used dataset where variance in the data is high.

5.1.2 Sequential Feature Selection

Sequential feature selection has a high computational cost because in every iteration of
algorithm, it runs a classification training process until given performance criteria is met
or performance converges. Also, increasing number of features increase computational
cost exponentially. Using sequential feature selection for 1000 features is computationally
demanding, therefore, some frequency intervals needs to be excluded. For instance, it is
not needed to investigate lower frequencies such as lower than 1MHz. Figure 5.5 shows the
most important two features if frequencies lower than 1MHz were not excluded.

Figure 5.5: Illustration of 2 features(X Axis:Total energy in 0-30kHz, Y Axis:Total energy
in 120-150kHz)(Red:Non-arcing, Blue:Arcing)

Figure 5.5 shows the total energy of resistive loads between 0 to 30kHz on the x-axis
and total energy between 120kHz to 150kHz on the y-axis. Because of the reasons that
are stated in Section 2.2, these intervals are not suitable for detection because of mask-
ing conditions and noise generated by other devices, therefore, they have to be excluded
for feature selection algorithm. However, these intervals give a good illustration of en-
ergy difference in different intervals for arcing and non-arcing situations. If these bands
were suitable to use in classification algorithms, they would be very informative and they
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would be classified with very high classification rates by SVM or other algorithms because
difference in energies are even visible by eye inspection in 2D graph.

In order to narrow the scope of bandwidth that feature selection selects the features
from, frequency intervals used in literature and know-how from existing devices are helpful
to decide initial subsets. In total of 12.4MHz bandwidth was covered using sequential
feature selection. 12.4MHz bandwidth corresponds to 413 features in feature space. 5MHz
and 17MHz are main frequencies that form the biggest single portions of initial bandwidth
with 2.5MHz of bandwidth each(5MHz in total). Other 7.4MHz bandwidth was randomly
chosen from 1MHz to 30MHz. When 36 features are selected which correspond to 1.08MHz
bandwidth, performance converges with better classification rate than using all bandwidth.
Using 26 selected features which correspond to 690kHz, performance is similar to using all
bandwidth.

Performance metrics for classifiers that are trained using all bandwidth showed that
SVM outperforms all other classifiers. Therefore, sequential feature selection was applied
only for support vector machine classifiers with different kernels.

Figure 5.6 shows the frequency interval that most of features are selected using sequen-
tial feature selection. There are 66 features shown in Figure 5.6 from 16Mhz to 18MHz. 14
features are selected by sequential feature selection among shown features. All the shown
data in Figure 5.6 are the measurements of LEDs while arcing occurs. However, it is im-
portant to state that selected features in these interval together with the other selected
features in different bands give the best classification results.
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Figure 5.6: Frequency band that most of the features are selected-LEDs while arcing(16Mhz
to 18MHz)

5.1.3 Classification Performance Using Selected Features

Trained algorithms using selected features perform better than using all bandwidth because
of reduced dimension of feature space. In this way, only informative data for classification
are used for training of classifiers. Therefore, performance increased by removing data that
cause noise for classifiers. In order to train the algorithms, a total of 1.08MHz bandwidth
is used. However, it is important to keep in mind that 1.08MHz bandwidth is not an
one-piece band but combination of 36 bands with 30kHz spectrum.

Table 5.13 shows confusion matrix obtained with support vector machine with linear
kernel using selected features.

Condition Positive Condition Negative

Predicted Condition Positive 22 7
Predicted Condition Negative 5 21

Table 5.13: Confusion Matrix-SVM(Linear Kernel)-Selected Features

Table 5.14 shows confusion matrix obtained with support vector machine with second
order polynomial kernel.
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Condition Positive Condition Negative

Predicted Condition Positive 23 7
Predicted Condition Negative 4 21

Table 5.14: Confusion Matrix-SVM(Polynomial Kernel (degree 2))-Selected Features

Table 5.15 shows confusion matrix obtained with support vector machine with third
order polynomial kernel.

Condition Positive Condition Negative

Predicted Condition Positive 23 5
Predicted Condition Negative 4 23

Table 5.15: Confusion Matrix-SVM(Polynomial Kernel (degree 3))-Selected Features

Table 5.16 shows confusion matrix obtained with support vector machine with RBF
kernel.

Condition Positive Condition Negative

Predicted Condition Positive 26 3
Predicted Condition Negative 1 26

Table 5.16: Confusion Matrix-SVM(RBF kernel)-Selected Features

Classifier ACC TPR TNR PPV NPV FPR FDR FNR
SVM(Linear) 0.78 0.81 0.75 0.76 0.81 0.25 0.24 0.18
SVM(Polynomial-2nd
order)

0.80 0.85 0.75 0.77 0.84 0.25 0.23 0.14

SVM(Polynomial-3rd
order)

0.83 0.85 0.82 0.82 0.85 0.18 0.18 0.14

SVM(RBF) 0.93 0.90 0.90 0.96 0.95 0.10 0.10 0.03

Table 5.17: Performance Metrics of Classifiers Using Selected Features

When dimension of feature space is reduced by removing uninformative features and
selecting ones for best classification performance by sequential feature selection, perform-
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ance of the all algorithms increased. Accuracy of SVM with linear kernel increased to
78% from %71. Accuracy of SVM with second order polynomial kernel increased to 80%
from %73 percent. Accuracy of SVM with third order polynomial kernel increased to 83%
from %75 percent. Accuracy of SVM with radial basis function kernel increased to 93%
from %89 percent. Dimension reduction by feature selection caused biggest performance
increase in linear and polynomial kernel because feature space is not linearly separable
and dimension has an important impact of performance of linear classifiers or SVM with
polynomial kernel.

Dimmers used with resistive loads(heaters) are the most wrongly classified load group
using all types of classifiers. It is inspected that current waveform of dimmers are similar
to resistive loads while arcing occurs. This is the main reason that it is difficult to classify
dimmers. LEDs and single phase induction motors are classified correctly in most of the
SVMs, especially, SVM with RBF.

SVM with RBF outperformed all other classifiers with a classification of 93% using
selected features as input. Figure 5.7 shows receiver operating characteristics of designed
support vector machine with RBF kernel using data selected by sequential feature selection.

Figure 5.7: Receiver Operating Characteristics of Support Vector Machine with RBF kernel
using selected data
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Chapter 6

Conclusions

Direct digitization as data acquisition method combined with supervised machine learning
algorithms based on features extracted in frequency domain is suitable technique for AC
arc fault detection. 5MHz and 17MHz are the best main frequencies to use for detection
purposes. Support vector machine with RBF kernel has a classification rate of 93%. Using
selected bands to train the algorithms improves classification accuracy considerably. SVM
with RBF kernel outperformed SVM with linear kernel by 7%. Classification rates of
SVMs with polynomial kernel, for both second order and third order, were 7% and 8% less
respectively when RBF kernel was used.

Arc fault detection by using direct digitization was realized in this thesis and feasibility
of method is proved by classification rates. Direct digitization is more flexible compared to
existing detection methods in terms of possibilities and freedom of signal processing oppor-
tunities. Bandwidth is divided into sub-bands of 30kHz and feature selection algorithms
were applied. In existing solutions, bandwidths of 30kHz are not feasible to design an ana-
log front end, however, using direct digitization and properly selected 36 features which
means a total of 1.08MHz bandwidth, are able to classify arc faults with 93% accuracy.

The advantage of direct digitization is the ability of using relatively small intervals(such
as 30kHz). Using such small bands are advantageous because for wider bands, noise char-
acteristics can be masked by another signal and if there is a stochastic or deterministic
signal that causes masking, all the information gathered through that wide band becomes
unavailable. However, direct digitization prevents this because even if there is a masking
situation, it only affects a single band but others still remain informative.

Two different feature selection metaheuristics were applied to select suitable features.
It was seen that neighborhood component analysis is not effective when input data has
high variance. Since, high frequency components of frequency spectrum are much smaller
than lower frequencies, NCA is not able provide effective selection of features for wide
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bandwidths. However, when variance of input is not high, namely, smaller band is given
as input, NCA was able to perform feature selection more efficiently.

Sequential feature selection is effective for choosing suitable bands because algorithm
itself takes classifier performance into account in selection process. 1.08MHz of band-
width(36 features of 30kHz) was chosen by sequential feature selection. By using these
features, best classifier’s(SVM with RBF) performance was increased to 93%.

Dimmers have the lowest classification rates in the tested loads. It is inspected that
current waveforms of dimmers under normal operation are similar to current waveforms of
resistive loads while arcing fault occurs. This is the main reason that dimmers has lower
classification rates compared to other loads.

LEDs and power sources with active power correlation has the best classification rates
and they are classified correctly using SVM with RBF kernel as classification algorithm.

SVM classifiers with different kernels(linear, second order polynomial, radial basis func-
tion), k-nearest neighbors classifiers with different k values(2,3,5), decision tree with differ-
ent limits of splits(maximum, 7,11) and Adaboost algorithm are trained and their perform-
ance are compared. Feature space is generated using frequency domain analysis and all
feature space was used to train algorithms for comparison purposes. SVM with RBF kernel
outperformed all other classifiers with its classification rate(89%) before feature selection.
Adaboost also has successful performance metrics, especially, false positive rate. However,
accuracy and other performance metrics of SVM with RBF kernel are better than Ada-
boost. These metrics and generalization ability of SVM make it the most suitable classifier
to employ in AC arc fault detection. Therefore, best features are selected to train SVMs by
sequential feature selection. In total 1.08MHz that corresponds to 36 features are selected
and SVM with RBF kernel has 93% classification rate when it is trained with these selected
features.

This thesis proves that using direct digitization as data acquisition method and fre-
quency domain analysis is increasingly feasible method for AC arc fault detection.

Main purposes of this thesis are to design a successful detection algorithm by employing
direct digitization and supervised machine learning classifiers. Objective is achieved with
a 93% classification rate.

Designed feature selection algorithms form a basis to select features for both designed
algorithm in this thesis and for existing analog frontend solutions. However, some modi-
fications are necessary to make for analog frontend solutions. For instance, it would not
be feasible to design an analog circuit that has 36 or more band-pass filters whereas it is
very simple in direct digitization. Therefore, feature selection algorithm can be modified
to choose consecutive bands so that they are usable with analog frontend solutions.
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6.1 Future Work

Future work can be summarized as follows:

◦ Performance of supervised machine learning algorithms is heavily dependant on con-
struction and informativeness of feature space. It can be further increased by increas-
ing the number of measurements, load scenarios, and combinations of loads namely,
expanding the feature space with different data.

◦ Although most of the achieved bandwidth and widely used bands in literature are
investigated with sequential feature selection algorithm, covering all the achieved
bandwidth can increase the performance of designed algorithm.

◦ Obtained classifier(SVM with RBF kernel) is optimal by the grid used in grid-search
to tune the regarding parameters of algorithm. Therefore, performance can be slightly
increased by fine tuning around the achieved parameters.

◦ Modified accuracy score can be implemented to penalize false positive classifications.
Therefore, nuisance tripping can be avoided better by training the algorithms to
avoid false positives.

◦ Feature space for SVM does not have be constructed by the analysis in frequency
domain. Analysis and features extracted from other domains such as time-frequency
domain(STFT), or wavelet transformation can be used to increase performance and
robustness of the designed detection method.

◦ In order to use the feature selection methodologies offered with existing solutions,
it is needed to modify the feature selection algorithm to choose consecutive bands
in feature space because approach implemented in this thesis freely chooses different
bands without considering their positions. However, such selection of bands would
not be feasible for existing solutions.

◦ Recurrent neural networks, especially long short term memory units which is a special
kind of RNN explicitly designed to be capable of learning long-term dependencies[57],
are very interesting algorithms to employ for AC arc fault detection. Using deep
learning instead of supervised machine learning ease the process of feature selection
together with other advantages. Therefore, it should be further investigated to use
LSTM networks for AC arc fault detection.
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